idiopathic pulmonary fibrosis (IPF); usual interstitial pneumonitis (UIP)
Jump to navigation
Jump to search
Introduction
IPF is a highly variable, but progressive disease of unknown etiology.
Etiology
- pattern may be seen with:
- connective tissue disease
- pneumoconiosis (occupational lung disease)
- asbestosis
- coal workers pneumonoconosis
- silicosis
- beryliosis
- organic dust exposure (carpenters)[5]
- smoking[5]
- hypersensitivity pneumonitis[5]
- molds
- avian antigents
- Mycobacteria
- isocyanates
- drug-induced interstitial lung disease
- idiopathic
Epidemiology
- onset most commonly between age 50-70 years
- most common interstitial lung disease in older adults[8]
Pathology
- usual interstitial pneumonia (UIP)
- varying degrees of patchy interstitial fibrosis & alveolitis interspersed with normal pulmonary parenchyma
- distortion of pulmonary architecture with cystic spaces (honeycomb lung) in advanced disease
- organizing pneumonia has been reported[5]
Genetics
- a subset of patients may have a familial form of IPF
- a polymorphism in the SFTPA1 gene influences susceptibility to idiopathic pulmonary fibrosis in non-smokers
- defects in TERT are associated with susceptibility to idiopathic pulmonary fibrosis
Clinical manifestations
- insidious onset of exertional dyspnea
- onset over 3-15 months[5]
- relentlessly progressive disorder
- episodes of acute exacerbation may occur[11]
- breathlessness (dyspnea) & cough (non-productive, dry)
- chest auscultation
- bibasilar, end-expiratory (Velcro) crackles
- bibasilar, fine inspiratory crepitant rales
- bibasilar, inspiratory crackles
- clubbing of digits 40-80%
- no fever
- cor pulmonale (late manifestation)
Laboratory
- arterial blood gas
- hypoxemia at rest (variable)
- chronic respiratory alkalosis
- respiratory acidosis in more severe cases
- serology
- serology generally negative or low-titer[5]
- antinuclear antibody (ANA) positive in 35%
- rheumatoid factor (RF) positive in 30%
- anti-neutrophil cytoplasmic antibody (ANCA)
- serum angiotensin-converting enzyme (ACE) low
- serum protein electrophoresis (SPE)
- polyclonal gammopathy in > 50%
Diagnostic procedures
- pulmonary function tests
- restrictive patterns
- decreased total lung capacity
- FEV1/FVC >= 0.75
- decreased DLCO
- pulse oximetry: decreased oxygen saturation during exercise
- increased alveolar-arterial oxygen gradient worsened or unmasked by exertion
- restrictive patterns
- fiberoptic bronchoscopy with bronchoalveolar lavage if acutely worsening hypoxemia in patients with diagnosis of idiopathic pulmonary fibrosis[14]
- fiberoptic bronchoscopy lung biopsy vs surgical lung biopsy to rule out other etiologies* (initial diagnosis)[5]
* classic high-resolution CT pattern in conjunction with multidisciplinary team case review may preclude need for diagnostic lung biopsy[5][22]
Radiology
- chest radiograph
- diffuse bilateral peripheral reticular infiltrates (generally)
- predominantly lower lobe infiltrates
- honeycomb changes at the lung bases
- normal (occasionally)
- computed tomography (high resolution) of thorax
- septal line thickening with traction bronchiectasis[5]
- subpleural honeycombing (cystic changes)
- interstitial process in basal areas
- predominantly peripheral, subpleural & basilar reticular opacities[5]
- mild mediastinal & hilar adenopathy
- no ground glass opacities or nodules[5]
- ground glass opacities typical of interstitial pneumonia
- may appear during an acute exacerbation[11]
- ground glass opacities typical of interstitial pneumonia
- obtain prior to biopsy to delineate distribution of disease & direct selection of site for biopsy*
* classic high-resolution CT pattern in conjunction with multidisciplinary team case review may preclude need for lung biopsy[5][22]
Complications
- pulmonary hypertension (30-40%)
- acute exacerbations associated with high mortality
- acute respiratory failure
- mechanical ventilation not recommended[5]
Differential diagnosis
- connective tissue disease
- pulmonary-renal syndrome
- hypersensitivity pneumonitis
- drug-induced interstitial lung disease
- sarcoidosis
- chronic eosinophilic pneumonia
- Langerhan's cell granulomatosis
- bronchiolitis obliterans
- respiratory bronchiolitis interstitial lung disease
- acute interstitial pneumonia
- pulmonary alveolar proteinosis[5]
- pulmonary emphysema (clubbing is rare)[8]
Management
- multidisciplinary team case review[5][22]
- classic high-resolution CT pattern in conjunction with multidisciplinary team case review may preclude need for diagnostic lung biopsy
- supportive
- pirfenidone & nintedanib are the preferred agents[13]
- neither useful for acute exacerbation[23]
- poor response to corticosteroids & other immunosuppressive agents
- prednisone
- 1.0-1.5 mg/kg PO QD early in the course of disease
- 0.5-1.0 mg/kg PO QD 3-6 months if favorable initial response
- 0.25 mg/kg PO QD for 6 months
- taper to minimum dose that maintains clinical stability after 1 year
- 50% of patients show subjective improvement
- 25% show objective improvement
- patients with organizing pneumonia may be more likely to respond to glucocorticoids[5]
- cyclophosphamide
- azathiaprine plus prednisone
- azathiaprine
- 3 mg/kg/day
- max dose 200 mg/day
- prednisone (low dose)
- azathiaprine
- combined use of corticosteroid + cyclophosphamide or azathioprine for young patients[5]
- prednisone
- anti-fibrotic agents
- colchicine 0.6 mg QD or BID
- may be used in connection with prednisone &/or azathioprine
- supresses release of fibroblast growth factors, fibronectin & alveolar macrophage-derived growth factor
- inhibits fibroblast proliferation & total collagen synthesis
- nintedanib (Ofev) & pirfenidone (Esbriet) FDA-approved
- both slow progression of disease on pulmonary function tests[12][19]
- neither improves perceived quality of life
- neither useful for acute exacerbation[23]
- recombinant human pentraxin 2 (presumptively anti-fibrotic) may slow decline in lung function over 28 weeks[15]
- colchicine 0.6 mg QD or BID
- antineoplastic agents:
- nintedanib may attenuate lung-function decline & acute exacerbations[12]
- adding sildenafil to nintedanib does not improve quality of life or reduce 24-week mortality[16]
- nintedanib + pirfenidone may attenuate disease progression[5]
- neither useful for acute exacerbation[23]
- nintedanib may attenuate lung-function decline & acute exacerbations[12]
- N-acetylcysteine 600 mg TID may slow progression[7]
- of no benefit[12]
- combination of prednisone, azathioprine & N-acetylcysteine not recommended[13]
- not recommended[13]
- interferon gamma 1b subcutaneously of no benefit[4]
- trimethoprim-sulfamethoxazole of no benefit[21]
- imatinib, ambrisentan sildenafil, bosentan, macitentan
- warfarin
- mechanical ventilation if lung transplantation is not an option[5]
- mechanical ventilation not recommended (MKSAP19)[5]
- extracorporeal membrane oxygenation a better option than mechanical ventilation as a bridge for lung transplantation[5]
- symptomatic
- cough may respond to thalidomide
- palliative treatment for acute respiratory failure
- multidisciplinary collaborative model to address the palliative care needs result in improved end-of-life care & decreased hospital deaths[18]
- unilateral lung transplantation
- indications:
- young individuals
- end-stage disease
- free of infection
- 5 year survival is 50%
- only intervention that improves survival[5]
- older patient (72 years) with hypertension & type-2 diabetes not a candidate[5]
- indications:
- prognosis:
- median survival is 3-6 years[5][8]
- poor outcomes with mechanical ventilation
- mortality in patients hospitalized with acute respiratory failure 86-97%[5][10]
- good prognostic indicators
- young age
- less severe disease on presentation
- predominantly cellular versus fibrotic histology
- initial response to glucocorticoids
- no curative therapy
- spontaneous remissions do NOT occur
- acute deterioration occurs with 50% of deaths[6]
More general terms
References
- ↑ Manual of Medical Therapeutics, 28th ed, Ewald & McKenzie (eds), Little, Brown & Co, Boston, 1995, pg 254
- ↑ Mayo Internal Medicine Board Review, 1998-99, Prakash UBS (ed) Lippincott-Raven, Philadelphia, 1998, pg 751-52
- ↑ Ryu JH et al Idiopathic pulmonary fibrosis: current concepts Mayo Clinic Proc 73:1085-1101, 1998 PMID: https://www.ncbi.nlm.nih.gov/pubmed/9818046
- ↑ 4.0 4.1 Journal Watch vol 19 #22, pg 176, Nov 15, 1999
FDA Medwatch http://www.fda.gov/medwatch/safety/2007/safety07.htm#Actimmune
King TE et al Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial Lancet, Early Online Publication, 30 June 2009 doi:10.1016/S0140-6736(09)60551-1 - ↑ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 Medical Knowledge Self Assessment Program (MKSAP) 11, 14, 15, 16. 17, 18, 19. American College of Physicians, Philadelphia 1998, 2006, 2009, 2012, 2015, 2018, 2022.
Medical Knowledge Self Assessment Program (MKSAP) 19 Board Basics. An Enhancement to MKSAP19. American College of Physicians, Philadelphia 2022 - ↑ 6.0 6.1 Journal Watch 25(16):127, 2005 Martinez FJ, Safrin S, Weycker D, Starko KM, Bradford WZ, King TE Jr, Flaherty KR, Schwartz DA, Noble PW, Raghu G, Brown KK; IPF Study Group. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005 Jun 21;142(12 Pt 1):963-7. Summary for patients in: Ann Intern Med. 2005 Jun 21;142(12 Pt 1):I23. PMID: https://www.ncbi.nlm.nih.gov/pubmed/15968010
- ↑ 7.0 7.1 Demedts M et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 2005 Nov 24; 353:2229-42. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16306520
Hunninghake GW. Antioxidant therapy for idiopathic pulmonary fibrosis. N Engl J Med 2005 Nov 24; 353:2285-7. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16306527 - ↑ 8.0 8.1 8.2 8.3 Geriatric Review Syllabus, 7th edition Parada JT et al (eds) American Geriatrics Society, 2010
Geriatric Review Syllabus, 11th edition (GRS11) Harper GM, Lyons WL, Potter JF (eds) American Geriatrics Society, 2022 - ↑ Horton MR et al. Thalidomide for the treatment of cough in idiopathic pulmonary fibrosis: A randomized trial. Ann Intern Med 2012 Sep 18; 157:398 PMID: https://www.ncbi.nlm.nih.gov/pubmed/22986377
- ↑ 10.0 10.1 10.2 Raghu G, Collard HR, Egan JJ et al An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011 Mar 15;183(6):788-824 PMID: https://www.ncbi.nlm.nih.gov/pubmed/21471066
- ↑ 11.0 11.1 11.2 Collard HR, Moore BB, Flaherty KR et al Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2007 Oct 1;176(7):636-43 PMID: https://www.ncbi.nlm.nih.gov/pubmed/17585107
- ↑ 12.0 12.1 12.2 12.3 Richeldi L et al Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. N Engl J Med. May 18, 2014 <PubMed> PMID: https://www.ncbi.nlm.nih.gov/pubmed/24836310 <Internet> http://www.nejm.org/doi/full/10.1056/NEJMoa1402584
King TE et al A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. N Engl J Med. May 18, 2014 <PubMed> PMID: https://www.ncbi.nlm.nih.gov/pubmed/24836312 <Internet> http://www.nejm.org/doi/full/10.1056/NEJMoa1402582
The Idiopathic Pulmonary Fibrosis Clinical Research Network. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 2014 May 29; 370:2093 <PubMed> PMID: https://www.ncbi.nlm.nih.gov/pubmed/24836309 <Internet> http://www.nejm.org/doi/full/10.1056/NEJMoa1401739
Hunninghake GM A New Hope for Idiopathic Pulmonary Fibrosis. N Engl J Med. May 18, 2014 <PubMed> PMID: https://www.ncbi.nlm.nih.gov/pubmed/24836311 <Internet> http://www.nejm.org/doi/full/10.1056/NEJMe1403448 - ↑ 13.0 13.1 13.2 13.3 Raghu G, Rochwerg B, Zhang Y et al An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline Am J of Resp and Crit Care Medicine, 2015. 192(2):e3-e19 <PubMed> PMID: https://www.ncbi.nlm.nih.gov/pubmed/26177183 <Internet> http://www.atsjournals.org/doi/abs/10.1164/rccm.201506-1063ST#.VaaFXbe-1Rk
- ↑ 14.0 14.1 Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. N Engl J Med. 2018 May 10;378(19):1811-1823. PMID: https://www.ncbi.nlm.nih.gov/pubmed/29742380 https://www.nejm.org/doi/full/10.1056/NEJMra1705751
Rothaus C Idiopathic Pulmonary Fibrosis. NEJM Resident 360. May 9, 2018 https://resident360.nejm.org/content_items/idiopathic-pulmonary-fibrosis - ↑ 15.0 15.1 Raghu G, van den Blink B, Hamblin MJ et al Effect of Recombinant Human Pentraxin 2 vs Placebo on Change in Forced Vital Capacity in Patients With Idiopathic Pulmonary Fibrosis. A Randomized Clinical Trial. JAMA. Published online May 20, 2018 PMID: https://www.ncbi.nlm.nih.gov/pubmed/29800034 https://jamanetwork.com/journals/jama/fullarticle/2681945
Gibson KF, Kass DJ. Clinical Trials in Idiopathic Pulmonary Fibrosis in the "Posttreatment Era". JAMA. Published online May 20, 2018 PMID: https://www.ncbi.nlm.nih.gov/pubmed/29800063 https://jamanetwork.com/journals/jama/fullarticle/2681942 - ↑ 16.0 16.1 Kolb M, Raghu G, Wells AU et al. Nintedanib plus sildenafil in patients with idiopathic pulmonary fibrosis. N Engl J Med 2018 Sep 15; PMID: https://www.ncbi.nlm.nih.gov/pubmed/30220235 Free Article https://www.nejm.org/doi/10.1056/NEJMoa1811737
- ↑ Collard HR, Ryerson CJ, Corte TJ et al Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group Report. Am J Respir Crit Care Med. 2016 Aug 1;194(3):265-75. Review. PMID: https://www.ncbi.nlm.nih.gov/pubmed/27299520 Free Article
- ↑ 18.0 18.1 Kalluri M, Richman-Eisenstat J. From Consulting to Caring: Care Redesign in Idiopathic Pulmonary Fibrosis. Care Redesign. NEJM Catalyst. March 28, 2019 https://catalyst.nejm.org/idiopathic-pulmonary-fibrosis-care/
- ↑ 19.0 19.1 Dempsey TM, Sangaralingham LR, Yao Xet al. Clinical effectiveness of antifibrotic medications for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2019 Jul 15; 200:168 PMID: https://www.ncbi.nlm.nih.gov/pubmed/31150266 https://www.atsjournals.org/doi/10.1164/rccm.201902-0456OC
- ↑ 20.0 20.1 NEJM Knowldege+ Question of the Week. Jan 21, 2020 https://knowledgeplus.nejm.org/question-of-week/265/
Holland A, Hill C. Physical training for interstitial lung disease. Cochrane Database Syst Rev. 2008 Oct 8;(4):CD006322.Review. Update in: Cochrane Database Syst Rev. 2014;10:CD006322. PMID: https://www.ncbi.nlm.nih.gov/pubmed/18843713
Dowman L, Hill CJ, Holland AE. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst Rev. 2014 Oct 6;(10):CD006322. Review. PMID: https://www.ncbi.nlm.nih.gov/pubmed/25284270 - ↑ 21.0 21.1 Wilson AM, Clark AB, Cahn T et al. Effect of co-trimoxazole (trimethoprim-sulfamethoxazole) vs placebo on death, lung transplant, or hospital admission in patients with moderate and severe idiopathic pulmonary fibrosis: The EME-TIPAC randomized clinical trial. JAMA 2020 Dec 8; 324:2282. PMID: https://www.ncbi.nlm.nih.gov/pubmed/33289822 https://jamanetwork.com/journals/jama/article-abstract/2773680
- ↑ 22.0 22.1 22.2 22.3 Raghu G, Remy-Jardin M, Richeldi L et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2022. 205:e18-e47. PMID: https://www.ncbi.nlm.nih.gov/pubmed/35486072 PMCID: PMC9851481 Free PMC article
- ↑ 23.0 23.1 23.2 23.3 NEJM Knowledge+
Patient information
idiopathic pulmonary fibrosis patient information